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oped from subgroup symmetry relations. 
Symmetry elements lost in each step of 
the sequence determine the possibilities 
for variants of the low symmetry phase 
and domains that can be present in the 
microstructure. The orientation of 
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1.   Introduction 

The need for low density structural materials 
with high temperature strength and low tempera- 
ture ductility has stimulated much interest in Ti- 
Al-Nb alloys. In particular alloys near and in the 
TisAl-NbjAl pseudobinary section with Nb levels 
from 10 to 30 at% have been investigated [1-8]. It 
has been shown that alloys with 10-12 and 25 at% 
Nb have very promising combinations of specific 
strength and rupture life at room and high 
(<800°C) temperatures [1,6,9-14]. The mechani- 
cal properties of these alloys were found to be very 

sensitive to their microstructure. Most of the mi- 
crostructures were formed by heat treatments that 
involve continuous cooling from a high tempera- 
ture (> 1100 °C) single-phase field with subsequent 
heat treatment at lower temperatures. The 
microstructure developed during continuous cool- 
ing depends strongly on cooling rate and alloy com- 
position [15-19] and thus affects the microstructure 
produced from it during the subsequent lower tem- 
perature (600 to 900 °C) treatment. From a tech- 
nological point of view, an understanding of the 
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formation mechanisms of both continuously cooled 
and annealed microstructures is very important for 
processing these alloys for optimum properties, for 
controlling behavior during thermal cycling, and 
for obtaining weldability. 

Equilibria along the TisAl-NbsAl pseudobinary 
section with Nb<30 at% involves phases based on 
two distinct fundamental structures: body centered 
cubic (BCC) at high temperatures and hexagonal 
close-packed (HCP) at lower temperatures. The 
BCC-based phases appear over a wide range of 
compositions at high temperatures as either a 
disordered A2 or an ordered B2 (CsCl-type) struc- 
ture depending on the exact temperature and 
composition [2-5,20]. For Ti-Al-Nb alloys the 32 
ordering appears to have Ti on one site and Al/Nb 
on the other site [21]. For low Nb content, the 
HCP-based structures have a disordered hexagonal 
a phase at intermediate temperatures and an 
ordered hexagonal DOio phase (TisAl or 02) at low 
temperatures. At higher Nb contents, the HCP- 
based low temperature structure is an orthorhom- 
bic O-phase (Ti2AlNb) [2,4-6,22]. The Dd, 
structure involves binary ordering of the a struc- 
ture with Ti/Nb occupying one site and Al the 
other site [23]. The O-phase structure involves 
further ternary ordering of the a2 phase with Ti, Al, 
and Nb predominantly occupying three different 
sites [2,24]. Due to the structural relations 
(reflected in the observed Burger's orientation 
relationships between the phases [2-4,7,8,25]) it is 
well known that the structural changes (transfor- 
mations) from BCC- to HCP-based phases can be 
described as a result of the following, where {hkl)c 
refers to the cubic phase: 

1) distortions of {110}c planes and changes in 
their interplanar distances; 

2) shuffles, or relative displacement of neighbor- 
ing (llO)c planes; 

3) reordering that changes the distribution (oc- 
cupancy) of Ti, Al and Nb atoms among the 
lattice sites. 

In the spirit of the Landau theory of phase tran- 
sitions [26] a common framework is sought to 
describe all of the BCC- and HCP-based phases. 
Then in principle, a single thermodynamic poten- 
tial can be identified as a continuous function of a 
set of order parameters that describe these three 
types of structural changes. To obtain such a com- 
mon framework, a site-to-site correspondence 
between the structures must be found. This corre- 
spondence between atom sites in these phases can 
be obtained by a single set of Wyckoff sites of the 

lowest symmetry phase considered, which in this 
case is the orthorhombic O-phase. Changes in the 
coordinates and occupancies of the Wyckoff posi- 
tions are related to the three types of structural 
changes mentioned above. Special values of the site 
occupancy parameters (and lattice parameters) will 
correspond to changes in crystal symmetry that will 
follow subgroup/supergroup paths. Analysis of 
these paths lead to important information regard- 
ing the sequence of phase transitions, possible 
transient states, interconnections between the 
structures, and domain interface configurations. 

To make this approach valid, two assumptions 
are required: 

1) The transformations are diffusionless, i.e., no 
changes in compositions of phases may occur. 
The assumption seems to be valid considering 
the time scale of long-range diffusion as com- 
pared the interatomic jumps or displacements 
required for chemical or displacive ordering 
respectively; 

2) The transformations are coherent, i.e., no dis- 
continuities occur by slip or fracture in order 
to relieve internal stress during the phase 
transformation. 

Both assumptions are likely to hold for the 
Ti-Al-Nb compositions considered either during 
sufficiently fast continuous cooling from the high 
temperature single-phase BCC or B2 field or 
during the initial stages of isothermal annealing of 
the metastable quenched-in phase. Experimental 
microstructural results indicate the occurrence of 
martensite-type ordering transitions and coherent 
structures under these conditions. Phase separa- 
tion involving long-range compositional diffusion 
will be treated by Bendersky and Boettinger 
[J. Res. Natl. Inst. Stand. Technol. 98, 585 (1993)]. 

In this paper we analyze the possible continuous 
transformations on cooling in the Ti-Al-Nb system 
and the expected features of idealized coherent 
microstructures. The approach here is to see the 
transformations as a sequence of symmetry re- 
ductions, and microstructure as a collection of 
domains. The microstructural features determined 
by this analysis will be used for comparison to the 
actual experimental results of Bendersky and 
Boettinger based on microstructural studies of 
three Ti-Al-Nb alloys, mainly by transmission elec- 
tron microscopy (TEM). 

Prediction of the microstructural features relies 
almost entirely on the known structural and 
symmetry relations between the highest and lowest 
symmetry   phases.   The   necessary   information 
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concerning the symmetry relations is contained in 
the space group tables of the International Tables 
for Crystallography [27]. Based on this information, 
maximal group/subgroup symmetry relations 
between phases will be established in Sec. 2. Each 
transformation step will be considered as a symme- 
try change, and the transformation path as se- 
quence of subgroups. The symmetry analysis can 
preclude certain transformation paths, assist in an 
interpretation of the observed paths and also 
predict possible intermediate phases. From the 
predicted path, domain structures can be antici- 
pated. Such domain structures will consist of a 
hierarchical distribution of interfaces due to the 
formation of orientational (twin) and translational 
(anti-phase domain) variants, (Sec. 3). It is 
expected that the formation of domain structures 
will minimize the elastic energy arises due to the 
coherency of transformation. Therefore, low en- 
ergy, stress free interfaces (SFI) between orienta- 
tional domains as well as their mutual arrangement 
are considered in Sec. 4. In Sec. 5 results from the 
previous sections will be summarized to show what 
microstructures are expected to be seen for differ- 
ent transformation paths. 

2. Group/Subgroup Relations Between 
BCC (Im3m), HCP (P63/mmc) and 
Ordered Orthorhombic (Cmcm) Phases 

2.1    Sequence of Maxima) Subgroups 

The Landau theory of phase transition of first or 
higher order assumes that the symmetry of the 
product phase is a subgroup of the parent phase 
and that the atomic positions of the two structures 
are closely related by a set of order parameters. 
Usually the low temperature phase has symmetry 
lower than the high temperature phase and the 
decrease in symmetry is known as ordering while an 
increase in symmetry is known as disordering. The 
group/subgroup relationship between the parent 
and product phases need not be maximal. '■ However 
in this paper, we will search for a sequence of 
maximal group/subgroup relationships in order to 
anticipate all possible (but not necessarily occur- 
ring) intermediate states. Such a sequence can be 
obtained using the International Tables for Crystal- 
lography [27], where the maximal subgroups and 
supergroups of all 230 crystallographic space groups 
are tabulated. Table 1 gives examples of such 
subgroup tables for (a) the Im3m space group (e.g., 

of the BCC structure) and (b) the P63/mmc space 
group (e.g., of the HCP structure). Examples of the 
known structures represented by these subgroups 
are B2 (Pm3m) in the Ila subgroups of Im3m and 
DOi9 (P63/mmc) in the lie subgroups of P63/mmc. 

Table 1. Subgroups and supergroups from the International 
Tables of Crystallography for Im3m and P63/mmc" 

(a) Im3in 

Maximal 1 non -isomorphic subgroups 
I [3] I4/m 12/m (I4/mmm) 

[3] I4/m 12/ra (I4/mmm) 
[3] I4/m 12/m (I4/mmm) 

-^ [4] Il32/m (R3m) 
[4] Il32/m (R3m) 
[4] Il32/m (R3m) 
[4] Il52/m (R5m) 
[2] Im31 (Im3) 
[2] 1432 
[2] I43m 

-*  Ila [2] Pm3m 
[2] Pn3n 
[2] Pm3n 
[2] Pn3m 

lib none 
Maximal 1 isomorphic subgroups of lowest index 

lie [27] Im3m (fl' = 3a, b' = 3b, c'=3c) 
Minimal non- •isomorphic supergroups 

I none 

II [4] Pm3m (2a'=fl, 2b'=b, 2c'=c) 

(b) P6j/mmc 

Maximal 1 non -isomorphic subgroups 

I [2] P63222 
[2] P63/mll(P63/m) 
[2] P63mc 
[2] P3ml 
[2] P31c 
[2] P5m2 
[2] P62c 

—> [3] Pmmc (Cmcm) 
[3] Pmmc (Cmcm) 
[3] Pmmc (Cmcm) 

Ila none 

' A subgroup H of space group G is called a maxima! subgroup 
of G if there is no subgroup Z, of G such that ff is a subgroup of 
L,i.e.,G>L>H[ni 

lib   [3]   H63/mmc(fl' = 3fl,f)' = 36)(P63/mcm) 

Maximal isomorphic subgroups of lowest index 

->   lie   [3]   P63/mmc(c' = 3c;[4]P63/mmc(fl' = 2a,ft'=26) 

Minimal non-isomorphic subgroups 

I       none 

" (a) the Im3m space group of the BCC structure and (b) the 
P63/mmc (of both simple HCP and ordered DOig) hexagonal 
structures. Different types of subgroups are listed according to: 
1—no change of translations; Ila—decentering; lib—enlarging 
the conventional cell; Ilc-no change of the group type, [x]- 
index of the subgroup which gives the number of variants. 
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Often there is no apparent subgroup relation 
between parent and product phases. Examples are 
found for transitions between structures with cubic 
and hexagonal symmetry, like the phases in the 
Ti-Al-Nb system. Here the non-coinciding 3-fold 
{HI) cubic and 6-fold [0001] hexagonal symmetry 
axes preclude such a relation. Usually transforma- 
tions between two phases which do not have a 
group/subgroup relation are considered reconstruc- 
tive and not treated by the Landau approach. A 
connection between symmetries can be restored in 
some cases by introducing an intermediate struc- 
ture with space group Gt that is either a supergroup 
of both structures, d and d, or a subgroup of both 
structures [28]. When d is a supergroup (also 
called a paraphase in [28]), it is at least a group 
union of the Gi and Gj groups and might not neces- 
sarily exist. Such is the case for the BCC and HCP 
phases considered here which already have very 
high symmetry. However a subgroup, d can always 

be found (and not necessarily the trivial group PI) 
as the intersection group of d and Gi. In particu- 
larj_for the disordered BCC and HCP phases with 
Im3m and P63/mmc space groups and an orien- 
tation of unit cell axes according to the Burger's 
relationship (parallel close packed directions 
[lll]c//[1120]h and planes (110)^/7(0001 )h), the 
intersection group d is the orthorhombic Cmcm, 
with its c-axis parallel to the [110]c direction. 

The Cmcm space group (with appropriate choice 
of Wyckoff sites) can represent a structure which is 
close to HCP but differs in symmetry and relative 
position of the atoms in the basal planes (Fig. 1). 
Such an intermediate structure was reported as a 
martensitic phase in some Ti alloys [29]. The 
Cmcm structure can also be considered as the BCC 
structure distorted by shuffles (relative shifts) of the 
(llO)c planes. In this case the Cmcm group could 
have been found procedurally by taking the inter- 
section of the cubic symmetry and the symmetry 
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Fig. 1. The Cmcm space group is represented by the structure (a) which is close to both the HCP (b) and BCC (c) but nevertheless 
different in symmetry and the relative positions of their basal planes. The structures are shown in projections along their [001] (a,b) 
and [110] (c) directions. Black and white shades represent two neighboring layers of atoms. 
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of the shuffle displacement wave (mmm point 
group symmetry for the (110)[TlO]-type shuffle 
[30,31]). Such symmetry can be locally present in 
the premartensitic tweed states of quenched BCC 
or BCC-based structures, which are also known to 
have the (110)[TlO]-type soft phonon modes 
(tweed BCC).' 

Sequences of maximal subgroups were found 
that connect the highest symmetry cubic and 
hexagonal space groups to the low symmetry 
orthorhombic "intersection" space group (Fig. 2). 
This sequence includes all known equilibrium 
phases observed in alloys near the TijAl-NbjAl 
section with less than 30 at% Nb. The figure 
includes sequences along disordered (BCC) and 
ordered (B2) branches of the high temperature 
phases. In the figure the space groups are 
connected to each other with arrows indicating 

I   liii3m(A2) 1 

Pni3ni (B2> It/inmm 

symmetry decrease. The numbers shown are the 
indices of symmetry reductions between two neigh- 
boring subgroups (the index of a subgroup is the 
ratio of the number of symmetry elements in a 
group to that of the subgroup). These integers give 
the number of lower symmetry variants (domains) 
that would be possible if a transition from high to 
the low symmetry occurred. Inclined arrows 
indicate symmetry changes due to atomic site 
(Wyckoff) position changes leaving the occupancy 
fixed, i.e., displacive ordering. Vertical arrows 
indicate symmetry changes due primarily to 
changes in atomic site occupancy, i.e., chemical 
ordering. Slight adjustments of site positions and 
occupancies due to the new atomic environments 
will accompany the chemical and displacive order- 
ing respectively. As described in Sec. 3, one possi- 
ble transformation sequence for the formation of 
the lowest symmetry orthorhombic phase from 
BCC will involve symmetry increase (supergroup 
formation) from the A20 structure to the A3 
structure. In this case no new variants are formed. 

Cmmm 

^2^ 

P6,/iiiiiK (DO,,) 

^2. f 
Pmma(B19) : 

2 
t 1 

1 Cmcjn (AjBQ              | 

Fig. 2. Subgroup/supergroup symmetry relations between the 
high symmetry Im3m (BCC) and the lower symmetry 
orthorhombic Cmcm (Ti^AlNb) space groups. Space groups are 
connected to each other with arrows pointing in the direction of 
a decrease in symmetry. The number shown in square brackets 
next to each arrow is the index of symmetry reduction. Vertical 
arrows are used to indicate changes in symmetry due to 
displacive ordering. Angled arrows indicate that the difference 
in symmetry is due to changes in atomic site occupancy (chemi- 
cal ordering). 

- The use of an intersection group to create continuity of group/ 
subgroup relations has been successfully used in a study of the 
formation of a>-type phases from a B2 high-temperature phase 
in a different region of the Ti-Al-Nb system containing 37.5 at% 
Al and 12.5 at% Nb [32]. In this case the [in](lll) shuffle 
displacement wave of the omega transition has the cylindrical 
»h symmetry (for coinciding wave and polarization vectors) 
[30]. The intersection point group of the m3m (BCC) and the 
a>h (with the mirror plane h parallel to one of the (lll)c direc- 
tions) has the trigonal 3m point group symmetry. The P3ml 
space group (3m point group) is obtained from the intersection 
of space groups of the two stable phases, the high-temperature 
B2 (Pm3m) and the low-temperature hexagonal B82 (P63/mmc). 
The structure with the trigonal P3ml symmetry was indeed 
observed as an intermediate state in the transformation path. 

2.2   Intermediate Subgroups and Their 
Corresponding Structures 

In addition to the space groups of the Ti-Al-Nb 
equilibrium phases, A2(BCC):Im3m, B2:Pm3m, 
A3(HCP):P63/mmc, DOi9:P63/mmc and 0-phase 
(Ti2AlNb:Cmcm), several other space groups must 
be introduced in order to keep the subgroup rela- 
tion maximal (Fig. 2). Crystallographic structures 
corresponding to the space groups in Fig. 2 are 
shown in Figs. 3 and 4 (with occupancies relevant 
for the ternary Ti-Al-Nb alloys). These figures 
assume an atom to atom correspondence between 
the structures. In Fig. 3 all of the structures are 
presented in a common projection normal to their 
close-packed planes. Frames of both the largest unit 
cell (of the 0-phase) and of the particular crystal 
structure unit cells are also shown. Analysis of the 
intermediate structures lead to the following 
details. 

The I4/mmm and Fmmm_structures (obtained 
from the disordered BCC, Im3m) and the P4/mmm 
and Cmmm structures (obtained from the ordered 
B2, Pm3m) represent homogeneous strain of the 
cubic lattice. The I4/mmm (Wyckoff position 2a) 
and P4/mmm (Wyckoff positions la and Id) are 
tetragonally distorted along the cubic (100) direc- 
tion. The Fmmm and Cmmm are structures with 
different distortions along two orthogonal cubic 
(Oil) directions (with Wyckoff positions 4a and 2a, 
2c, respectively, and a doubled unit cell, recentered 
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Fig. 3. Structures corresponding to the Fig, 2 subgroup sequence, as viewed along the [001]u ([011]c) direction. Frames of the largest 
unit cell (of the O-phase) and of each particular crystal structure are drawn. Increasing size circles represents Al, Ti, and Nb atoms, 
respectively. Filled and empty circles correspond to different parallel layers of atoms. 

and rotated by 45° (a'=a+b; b'=a-b). The 
homogeneous strains of orthorhombic symmetry do 
not change the number of atoms per primitive 
cell —there remains one atom/cell for the dis- 
ordered and two atoms/cell for the ordered struc- 
tures (Fig. 4). 

The overall orthorhombic distortion of the cubic 
structure, if not supported by ordering, is most 
probably unstable for materials with simple metallic 
bonding. Therefore, these structures are not 
expected to exist as metastable states but rather 
represent a homogeneous strain accompanying 
(and selecting the orientation of) the subsequent 
symmetry reduction by shuffle displacement (from 

Fmmm and Cmmm to Cmcm and Pmma, respec- 
tively). 

Structures corresponding to the Cmcm and 
Pmma space groups are known in the literature as 
the Struckturbericht A20 (a-U prototype) and B19 
(AuCd prototype), respectively. These structures 
can be obtained by heterogeneous shuffles of pairs 
of (llO)c planes of either disordered or ordered 
cubic structure [corresponding to either 100 or 010 
planes of the Fmmm and Cmmm, respectively (Fig. 
4)]. The amplitude of the shuffle displacement wave 
is reflected in the parameters of ihty coordinate of 
Wyckoff positions: 4c (0,;',l/4) for the Cmcm struc- 
ture and 2e (l/4,yi,0); 2f (1/4,^2,1/2) for Pmam. The 
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Fig. 4. Space groups and structures representing homogeneous 
strain distortion of the cubic lattice (a), (b) The I4/mmm and 
P4/mmm are structures of tetragonal distortion along cubic 
{100) (with Wyckoff positions 2a and la, Id, respectively), (c) 
The Fmmm and Cmmm are structures with orthorhombic 
biaxial distortion along orthogonal cubic (Oil) directions (with 
Wyckoff positions 4a and 2a,2c, respectively, and a doubled size 
unit cell. 

symmetry changes do not depend on the size of the 
displacement. The effect of the shuffles on the 
disordered Fmmm (010) is that its mirror planes 
are changed into diagonal glide planes, and all two- 
fold axes disappear, as shown in Fig. 5 which com- 
pares the symmetry elements of these two space 
groups. The Cmcm structure (or equivalently 
Amam for the Fmmm coordinate system) has a 
shifted coordinate origin at either 0, —1/4, —1/4 or 
0,1/4,1/4 (in order to have coincidence of common 
symmetry elements as shown in Fig. 5). Similarly, 
for the ordered Cmmm (010) mirror planes and 
two-fold axes disappear, and the symmetry became 
Pmam (or conventional Pmma [27] with a permuta- 
tion of the b and c axes). A new coordinate origin 
of the Pmma is also at ± 1/4,0,1/4. 

The two origins correspond to two.translational 
variants, with a (0,1/2,0) displacement vector. 
Formally, from the maximal subgroup relations 

[27], the translational variants are the result of a 
lattice decentering. Structurally, the formation of 
the two variants can be described by shuffle dis- 
placement waves that are out of phase by a half 
period in opposite directions. Because of the 
displacive nature of ordering, a translational inter- 
face between them has a stacking fault nature with 
atomic distances different from the bulk material. 
We will discuss details of the interface structure 
later. 

For some special values of Wyckoff positions 
(y coordinates) and/or of lattice parameters, a 
structure can degenerate into a structure of higher 
symmetry. Such a higher symmetry structure, the 
hexagonal P63/mmc (Fig. 3), occurs for the dis- 
ordered Cmcm when the shuffles are such that 
Wyckoff position parameter y is 1/3 and the ratio of 
lattice parameters, b/a, is v5. For the ordered 
orthorhombic Pmma such a symmetry increase by 
displacement is precluded by the chemical order 
inherited from the B2. The disordered hexagonal 
P63/mmc is expected to be more stable than the 
disordered orthorhombic Cmcm; in a hard sphere 
approximation P63/mmc has higher entropy (due 
to its higher symmetry) while interaction energies 
are comparable. No thermodynamic barrier for the 
Cmcm (A20) to P63/mmc (A3) transition is ex- 
pected, and therefore the disordered Cmcm struc- 
ture is believed to be unstable. This conclusion 
cast doubts on the existence of the truly disordered 
orthorhombic martensite [29]. (Nevertheless disor- 
dered Cmcm(A20) structures are known for U, 
Am, Ce, Ga with nonspherical electron densities). 
Conversely, the Pmma structure (B19) could well 
be a stable or a metastable phase and exist as a 
transient state. Indeed numerous B19 phases are 
known in different systems as either metastable 
(martensitic) or stable phases, e.g., AuCd and 
NiTi. 

The structure with the lowest symmetry, the 
O-phase, also has the Cmcm space group and 
ternary ordering on three Wyckoff positions, 4ci, 
4c2, and 8g. The O-phase translations on basal 
(OOl)o plane are twice that of the binary ordered 
Pmma (B19). The structure can be obtained by 
ordering either Pmma (B19) or P63/mmc (DOw). 
The DO 19 structure itself can be obtained by binary 
ordering of the disordered HCP (A3) and could be 
in a intermediate metastable state. 
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Fig. 5. Comparison of the space-group diagrams of Fmmm and two translational variants of 
Cmcm. In order to have coincidence of common symmetry elements of these two space 
groups, the Cmcm diagrams must have a coordinate origin shifted to either 0,-1/4,- 1/4 or 
0,1/4,1/4. The translation vector between two Cmcm variants is [0 1/2 1/2]. 

2.3   Description of Structures as Special Cases of 
the Lowest Symmetry Cmcm 

To summarize, the structures from the group/ 
subgroup sequence can be described in terms of 
the lowest symmetry Cmcm space group corre- 
sponding to the TiaAlNb phase. The orthorhombic 
Structure has three Wyckoff positions, 4ci {^,yi, 
1/4), 4c2 (0,>'2,l/4) and 8g (jC3,}'3,l/4). Special values 
of the Wyckoff coordinates, the site occupancies. 

and the ratios of the orthorhombic lattice parame- 
ters can describe all the structures. The results are 
summarized in Table 2 where the space groups, 
Struckturbericht name, prototypes, restrictions on 
lattice parameters (if any), occupancies (general 
values and measured values for Ti,A!,Nb) and 
coordinates of the Wyckoff sites are presented. 
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Table 2. Description of various phases based on common sites in the Cmcm space group 

Structure Lattice Conditions Occup. Wyck. X y z 

TijAlNb, y, =0.163 ;>'2=0.623 A 4c, 0 y<. 1/4 
HgNa, Cmcm y3 = 0.904 ; ^3 = 0.231 B 4C2 0 yi 1/4 

C 8g Xi ^3 1/4 

TisAI, DOi9 b/a- = V3 A 4ci 0 1/6 1/4 
NiaSn, P63/mmc B 4C2 0 2/3 1/4 

B 8g 1/4 11/12 1/4 

aTi,A3 bla = -y/l A 4c, 0 1/6 1/4 
Mg, P63/mmc A 4C2 0 2/3 1/4 

A 8g 1/4 11/12 1/4 

Ti-Nb, A20 yi = = 0.1 A 4c, 0 yi 1/4 
aU, Cmcm A 4C2 0 l/2+>-, 1/4 

A 8g 1/4 3/4+y, 1/4 

Ti-Ni, B19 yi = = 0.156 A 4c, 0 yi 1/4 
AuCd, Pmam(Pmma) y2 = = 0.906 A 4C2 0 1/2+yi 1/4 

B 8g 1/4 y2 1/4 

pXi, A2 bla = = V2 A 4c, 0 1/8 1/4 
W, Im3m da = = V2/2 A 4C2 0 5/8 1/4 

A 8g 1/4 7/8 1/4 

TiNI, B2 b/a = =v5 A 4c, 0 1/8 1/4 
CsCl, Pra3m da = = V2/2 A 4C2 0 5/8 1/4 

B 8g 1/4 7/8 1/4 

From the schematic representation of the data in 
Fig. 3 one can visualize the transformation 
sequence as a continuous change of atomic sites 
occupancies and positions within the frameworlc of 
the 0-phase. Regardless of whether the trans- 
formations occur by a continuous mechanism, the 
common geometrical description of the known 
equilibrium phases permits the realization, in 
principle, of a single thermodynamic potential 
representing all of the phases as a function of a set 
of order parameters based on the site positions and 
occupancies. 

3.   Transformation Paths, Types and 
Hierarchy of Domains Interfaces 

The formal crystallographlc sequence of group/ 
subgroup relations (Figs. 2 and 3) suggests differ- 
ent ways that the coherent phase transformations 
from the high temperature BCC (Im3m) phase 
might occur in reality. While the direct formation 
of the lowest symmetry phase by a reconstructive 
transformation is possible, microstructural evi- 
dence  presented  by  Bendersky  and  Boettinger 

suggests the contrary. The transformation proceeds 
by steps according to the sequence which imply 
metastable transient phases. Each transient phase 
may exist over some temperature interval between 
upper (to the supergroup phase) and lower (to the 
subgroup phase) critical temperatures (or tempera- 
tures of phase instability for 1st order transitions). 
Each transformation step of the sequence will 
reduce a crystal of the higher symmetry phase into 
lower symmetry phase variants (except A20 -^ A3 
where an increase of symmetry does not lead to 
new variants). The orientation and relative trans- 
lation of the variants will be related to each other 
by the symmetry operations of the preceding higher 
symmetry phase that disappeared after the transi- 
tion. Therefore a hierarchical (in a sense of both 
symmetry reduction and domain interface distri- 
bution) microstructure is expected. Assuming the 
nucleation of different low symmetry phase vari- 
ants in each variant of the high symmetry phase 
and the absence of significant domain coarsening, a 
hierarchy of microstructural scale is also expected. 
The transformation sequence can then be recog- 
nized by the way in which the variants of the lowest 
symmetry phase are grouped. 
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Starting from the A2 (BCC) phase, the lowest 
symmetry 0-phase can be obtained along different 
transformation paths (different sequences of trans- 
formation steps). Using the maximal subgroups 
relations in Fig. 2 and reasoning about the stability 
of structures discussed in Sec. 2.2, one finds that 
following three transformation paths are feasible: 

Path 1:   Im3m(A2) -> [12] -^ Cmcm(A20) -^ [1] 

-^ P63/mmc(A3) -> [4] -^ P63/mmc(DOi9) 

-»[3] -> Cmcm(O) 

Path 2:   Im3m(A2) -* [2] -> Pm3m(B2) -> [12] 

-^ Pmma(B19) -* [2] -^ Cmcm(O) 

Path 3:   Im3m(A2) -^ [12] -> Cmcm(A20) -^ [2] 

-> Pmma(B19) -> [2] -^ Cmcm(O) 

where the numbers in brackets are the number of 
variants possible after symmetry the change. 

The microstructures resulting from these se- 
quences will consist of the same O-phase but with 
distinctly different hierarchies and types of inter- 
faces. The type of interfaces, either rotational, 
translational or mixed, is obvious from the group/ 
subgroup relation. Each symmetry reduction has 
necessarily more then one variant of the low sym- 
metry phase. Variant generating operations and 
their matrices, gij, can be obtained with the help of 
the International Tables for Crystallography [27] 
from the list of Symmetry Operations of the space 
group, after excluding the symmetry operations of 
the subgroup listed in the Maximal subgroups table 
(see Table 1). 

The number of variants in each transition is 
equal to the index of the subgroup (square brackets 
in Fig. 2 and in paths 1-3). For a sequence of 
transitions the number of lowest symmetry phase 
variants (with respect to the highest symmetry 
phase) will be the product of indices for each step. 
For the transformation, paths 2 and 3, the number 
of variants is the same; viz., 48 (2x12x2 or 
12x2x2). For the transformation path 1 more 
variants occur; viz., 144 (12x1x4x3) because of 
the hexagonal symmetry present as an intermediate 
state. The index of 12 in paths 1-3 is the product 
(3 X 2 X 2) of indices of the individual maximal sub- 
groups that accomplish the homogeneous distor- 
tion and the shuffles between Im3m and Cmcm or 
between Pm3m and Pmma. 

The maximal subgroups in [27] (e.g., shown in 
Table 1) are divided into isomorphic and non- 
isomorphic subgroup classes. The isomorphic 
subgroups (lie) differ from their parent group only 
by a translation group; i.e., an increased unit cell 
size (e.g., HCP to DOio ordering which maintains 
the same rotation group but doubles ihe unit 
cell dimensions in the basal plane). The non- 
isomorphic class is divided into three subclasses. 
Class Ila, in which the unit cell is decentered, will 
have translational variants similar to the j^so- 
morphic subgroups (e.g., ordering of BCC (Im3m) 
to B2(Pm3m)). Class lib, in which the unit cell is 
decentered and enlarged, will also have only trans- 
lational variants (e.g., ordering in the Fe-Al system 
of the B2(Pm3m) to the DO3 (Fm3m) phase). 
Therefore variants of these Classes, lla, lib and 
lie, are purely translational. The third type of non- 
isomorphic subgroup is Class I (t subgroups), which 
retain all translation, and have only rotational vari- 
ants (e.g., transition in the YBa2Cu307-s high-Tc 
superconductor from the tetragonal P4/mmm to 
the orthorhombic Pmmm superconducting phase). 
For non-maximal subgroups translational/ 
rotational combinations are possible. In Table 3, 
the type of interfaces which are created in each 
group/subgroup transformation step of the trans- 
formation paths 1-3 are summarized. 

In the case of coherent structure formation, the 
contacting volumes of the different variants, which 
form differently oriented or shifted lattices with 
respect to each other, are known respectively as 
rotational and translational domains. Mixed rota- 
tional/translational domains are also possible for 
transitions with non-maximal subgroup relation. A 
single rotational variant of a transformation usually 
has slightly different orientation of axes with 
respect to its parent than those following the struc- 
tural correspondence. The orientation depends on 
the kind of variant of the surrounding domains and 
the interface orientation. In general, the number 
and orientation of coexisting domains as well as the 
configuration of the domain interfaces, i.e., the 
domain structure, depend on the thermodynamics 
and kinetics of the phase transformation. 

Two major factors will effect the morphology and 
the orientation of equilibrium interfaces—their 
surface energy and their bulk elastic energy due to 
the misfit between different variants and between 
the matrix and different variants. For rotational 
domains the self-strains generate significant long 
range strain and one expects elastic energy mini- 
mization to dominate the selection of the interface 
patterns, as described in detail in Sec. 4. For trans- 
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Table 3. List of interfaces between domains in different group/subgroup transitions. The Class represents type of symmetry reduc- 
tion [37], the interfaces are described by domain generating symmetry operation (of lowest symmetry) 

Group/subgroup Class of subgroup Type of interface 

Im5m-*Pm3m 

Im3m-»Cmcm(A20) 

Cracra(A20)^P63/mmc(A3) 

P63/mmc(A3) ->■ P63/mmc(DO 19) 

P63/mmc(DOi,)-»Cmcm(0) 

Pm3m-^Pmma(B19) 

Cmcm(A20)^Pnima(B19) 

Pmma(B19)-*Ctncm(0) 

Ifa translational (APB) 

I+I + IIa rotational (twins of I and II kind), 
translational with stacking fault mixed 
twin/translational 

Supergroup no new interface 

lie translational (APB) 

I rotational (compound twins) 

I + I+IIa rotational (twins of I and II kind), 
translational with stacking fault, mixed 
twin/translational 

Ila translational (APB) 

lib translational (APB) 

lational domains, (class II subgroup transitions) 
there is no change of crystal system (e.g., cubic to 
cubic lattice in the BCC-»B2 transition), and there- 
fore only dilatational strains are expected. Thus the 
surface energy, or more precisely its anisotropy, 
controls the morphology. However, as many exam- 
ples from ordered alloys show, these surface ener- 
gies often have weak anisotropy and domain walls 
are isotropic and wavy. This is especially true for 
chemical (substitutional or interstitial) ordering 
[33]. Based on this, wavy isotropic interfaces are 
expected for_the following transitions presented in 
Table 3: Im3m^Pm3m, P63/mmc(A3)^P63/mmc 
(DO19), Cmcm(A20)^Pmma(B19) and Pmma 
(B19)^Cmcm(0). Less clear are two cases of 
translational domains in the Im3m->Cmcm (A20) 
and the Pm3m-*Pmma(B19) transitions as dis- 
cussed in detail in Appendixes A and B. 

4.    Equilibrium Structure of Rotational 
Domains: Interfaces and Their 
Arrangement 

For rotational domains the elastic energy domi- 
nates the interfaciai energy for sufficiently coarse 
structures. We will only consider equilibrium 
features of rotational domain structures which min- 
imize elastic energy while ignoring their interfaciai 
energy. For interfaces with equivalent elastic 
energy, the interfaciai energy, which can be differ- 
ent for different types and orientations of interfaces 
(even for the same pair of variants), determines the 
relative stability. 

It is convenient to subdivide the elastic problem 
into two steps. First, we will consider the simplest 
domain structure—two domains of two different 
variants. Secondly, using results for the domain 
pairs, we will discuss the domain structures con- 
sisting of more than two domains. The results, 
first discussed in general terms, will be applied to 
two transformations in the Ti-Al-Nb system involv- 
ing rotational domains: cubic to orthorhombic 
(Im3m->Cmcm, Pm3m-»Pmma) and hexagonal to 
orthorhombic (P63/mmc->Cmcm). 

4.1   Pairs of Domains 

The most important characteristic which deter- 
mines a domain structure is self-distortion, Sij, or its 
symmetric part, self-strain, eij. The self-strain is a 
homogeneous macroscopic strain that accompanies 
each phase transformation. The inhomogeneous 
strains associated with shuffles can be neglected 
since their effects cancel over a few atomic dimen- 
sions. Different variants of each transformation are 
characterized by different self-strain tensors 
according to different orientations of the crystal 
axes of the variants, and therefore of the principal 
axes of the tensor. The self-strain tensors of two 
different variants, e.g., 1 and 2, are connected by 
the following relation: 

^y(2) = giigjiekiil): (1) 

where guc is the matrix of one of the parent phase 
space group symmetry operators which are not a 
part of the space groups of the two variants. 
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Operating on the self-strain tensor of one variant 
with these lost symmetry elements generates the 
self-strain tensors for the other variants. Examples 
of these matrices for the hex^^O-phase and the 
BCC-^O-phase transformations are given in the 
Appendix A. 

In a coherent crystalline system incompatibility of 
the self-strains on both sides of the interface 
between domains creates internal stress originating 
from the interface. Such stress will not arise, and a 
stress-free interface (SFI) will result if 

1) the interface is planar, and 

2) the self-strains on both sides are compatible, 
i.e., no discontinuity of displacements occurs 
at the interface. 

To meet the requirement of compatibility it is neces- 
sary and sufficient that the difference between two 
self-strains can be represented as the symmetric 
part of a diadic product of two unit vectors, m and n: 

Aeij = eij (2) - e,7 (1) = \s {m -.rij + nmj) (2) 

where w,- is a vector normal to the planar interface 
considered, rij is a vector orthogonal to the m,, and 
s is a scalar measure of self-strain difference [33]. 

The rotation of the variants necessary to maintain 
contact between the domains is given as 

(Oij = ±\s {miiij —mmj). (3) 

When the strain difference given in Eq. (2) is com- 
bined with the relative rotation of domains given in 
Eq. (3), a simple shear will describe the relation- 
ship between the two domains. The distortion 
tensor describing this simple shear is either srtimj 
along a plane with m normal in the direction n or 
sniitij along the plane with n normal in the direc- 
tion m. These simple shears are twin shears, and 
the domains can be considered as twins with two 
twinning planes, morn, normal to each other. One 
of these twinning planes coincides with a mirror 
plane of the parent crystal structure (which is not a 
symmetry element of the variants under consider- 
ation) and therefore has rational indices. The other 
one can be a plane with irrational indices in coordi- 
nates of the parent crystal. The rational mirror 
plane corresponds to type I twinning, whereas the 
second, irrational plane, corresponds to type II 
twinning [34]. Using a simple two-dimensional 
example of a square to a rectangle (p4mm to 
p2mm) transition, Fig. 6 illustrates the operations 
described above. (Only Type I twinning occur in 
this example.) 

PARENT PHASE 

e(1) + a)\^) 
e(2) + (o\2) 

VARIANTS 

e(2) e(2) 

DOMAINS 

TWINS 

(I & II kind) 

S'(2) 

e(1) + «J(1) 
6(2) + m{2) 

Fig, 6. Two-dimensional example of the square to rectangular (p4mm to p2mm) transition illustrating formation of two pairs of 
domains, their rotations, strain-free interfaces and description by twinning. 
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The orientation of SFIs as well as the domain 
misorientations can be found directly from Eq. (2) 
in the coordinate system of the principle axes of 
the strain difference tensor Ae/j [33,35]. For all 
other coordinate systems it is convenient to trans- 
form Eq. (2) by multiplying it by xiXj, where xi is an 
arbitrary vector belonging either to the m (ximi = 0) 
or n (A:,n, =0) SFI planes to obtain [36] 

Xi[e,ii2)-eu(l)]xj=0. (4) 

This quadratic equation splits into the product of 
two linear equations whose solutions determine the 
coordinates of two SFI planes. (The absence of a 
solution of Eq. (4) implies that the difference 
between the self-strains of the variants can not be 
represented in the diadic form of Eq. (2), and 
therefore a domain pair generated by these 
variants cannot have a SFI.) 

Both equivalent equations, Eqs. (2) and (4), 
were obtained with the assumption that the self- 
strains are small [33, 36]. However, Eq. (4) can be 
easily generalized to avoid the small-strain approxi- 
mation using standard finite deformation analysis. 
A plane belonging to the parent phase becomes a 
SFI if any vector x* in that plane, after being trans- 
formed, will have the same length in both variants. 
In variant (1) the vector Xk becomes 
Xi(l) = [Sik+Sik(l)]xk, where 5,* is a unit matrix, 
Sik{l) is a self-distortion tensor of the variant 1. 
The variant (2) transforms the same vector Xk into 
Xi (2) = [8ik + Sik i2)]xk. The equality of the lengths 
[Xi^(\)=Xi'^(2)] leads to an equation similar in its 
form to Eq. (4) but where 

^ij ~ zK^'i "'" "J' ) ''" 2^ik^kj (5) 

Eq. (5) is a strain tensor commonly used to 
describe finite deformation and provides an exact 
definition of self-strain as a symmetric tensor based 
on the known self-distortion tensor of a transfor- 
mations, and it includes a quadratic term of the 
distortion tensor, 5,y. For weakly first order and 
second order ferroelastic-type transformations, the 
quadratic term can be neglected in the vicinity of 
transformation because 5,j (related to the order 
parameter) is small. For strongly first order 
martensitic transformations, with large distortions, 
the quadratic term can be considerable. 

Besides the solutions corresponding to the ratio- 
nal mirror planes in the parent phase, Eq. (4) has 
solutions that depend on the lattice parameters of 
the product phases, and therefore yield orienta- 
tions that are generally irrational and depend on 

transformation temperature and the phase compo- 
sitions. The solutions for orientations of SFIs for 
94 different combinations of higher and lower 
point groups, relevant for ferroelastic transforma- 
tion, are given by Sapriel by solving Eq. (4) [36]. 
For the transitions considered in this work, 
namely for BCC/B2 to orthorhombic/HCP struc- 
tures [Im3m(A2)^Cmcm(A20)/P63/mmc(A3) and 
Pm3m(B2)-^Pmma(B19)] and for HCP to orthor- 
hombic [(P63/mmc(DOi9)->Cmcm(0-phase)], spe- 
cific forms of Eq. (4) and its solutions are given 
in Appendix A. For the HCP-»orthorhombic 
transformation, there are only symmetric SFIs of 
the {lTOO}h and {1120}h types (the irrational solu- 
tion degenerates into a symmetric one). The SFIs 
correspond to {llOjo and {130}o, respectively, when 
transformed to coordinates of the O-phase. For the 
BCC^orthorhombic (or similarly HCP) transfor- 
mation, there are three SFIs of the {100}c type, six 
of the {110}c type, and six irrational {hhk}c types 
with h/k ratios depending on the lattice para- 
meters of the orthorhombic (or hexagonal) phase. 
The rational SFIs correspond to {021}o and {221}o, 
respectively, when transformed to coordinates of 
the O-phase. The {hhk}c-type interfaces in the 
O-phase coordinates are of the form 
{l,{s-l),2(s + l)}o where s=k/h. The {hhk}, 
interfaces, when calculated for the lattice parame- 
ters of the DO 19 or O phases taken from the litera- 
ture [4], are found to be close to {155}c and {144}c, 
respectively. The pair of orthogonal interfaces 
between different pairs of variants are summarized 
in Table 4 where the labeling of the pairs is given 
according to Fig. A.2. 

4.2   Polydoitiain Structures 

Two rotational domains separated by a planar 
SFI are a unique morphology that avoids long range 
elastic stress fields. Two domains cannot be 
bounded by the two conjugate orthogonal SFIs as 
shown in Fig. 7a, because the corner where these 
SFIs intersect each other would be a disclination, 
and therefore a source of a long-range distortion. 

The optimal shape of one domain included inside 
another is a plate with a small thickness to length 
ratio. (Experimentally the plates usually are found 
lenticular.) If the wide facets of the plate are SFIs, 
the stress field would be concentrated only near the 
plate edge, in a manner similar to a dislocation loop 
field (Fig. 7b) [35, 37]. This long range field can be 
reduced if a packet of plate-like domains is formed 
(Fig. 7c). If the boundaries of the packets (imagi- 
nary planes through the plate edges) are aligned 
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Table 4. List of SFI interfaces for all possible pairs of domain 
of the O-phase in the m3m-»mmm type transformation. Label- 
ing of variants and interface indexes are given in the cubic co- 
ordinates of Fig. A.2. s =k/h =2B/(A -C) 

Pair Interface in Miller 
of domains Interface equation indices 

1 0 0 
0 1 0 

0 1 1 
j 1 1 

0 1 1 
s 1 1 

1 0 T 
I j 1 

1 0 1 
1 s 1 

0 1 I 
5 1   1 

Oil 
s 1   1 

10 1 
1 s  1 

1 OT 
\ s  1 

1 0 0 
0 0 1 

1 T 1 
1 1 s 

1 1 0 
1 TJ 

1 I 0 
1 1 s 

1 T 0 
IT s 

0 1 0 
0 0 1 

1/2 x = (i\ 
>• = 0; 

1/3 
-2Bx + {C-A)(y+z) = Q\ 

1/4 y = -z; 
-7Bx^{C-A)iy-z) = Ki\ 

1/5 x=z; 
-'2By + (C-A){x+z)=Q; 

1/6 X = -z; 
-2By + (,C-A)(x-z) = 0; 

2/3 y = -z; 
2Bx + (C-A)(y-z)=0; 

2/4 y =z; 
2Bx + (C-A)(y+z) = 0; 

2/5 X = -z; 

2By + {C-A)(y-z) = 0; 

2/6 X =z; 

2By+(C-A)(y+z) = 0\ 

3/4 x = 0; 
7 = 0; 

3/5 x=y; 
-2Bz + (C-A)(x+y) = 0; 

3/6 x= -y; 
-2Bz+{C-A)(x~y) = 0; 

4/5 x= -y; 
2Bz + (C-A)(x-y) = 0; 

4/6 X =y; 

2Bz + (C-A)(x+y) = (i; 

5/6 y = 0; 
2 = 0; 

2    y 
2     t 

Fig. 7. Schematic drawing of two rotational domains (white and 
gray shades) separated by planar SFIs and corresponding long 
range elastic stress fields, (a) Disclination field of a dihedral 
angle of a domain interface, (b) Dislocation-like field of a single 
domain inside another domain serving as a matrix, (c) Self- 
accommodated group of domains with reduced long range field. 

structed. Examples of a domain structure of 2nd 
order for the BCC->Ort transition consisting of 
3 variants are discussed below and illustrated in 
Fig. 8. 

The pseudo-SFIs between polytwins can be 
determined by the same Eqs. (4) and (5), where e;; 
(or Sij) is an average self-strain of the polytwin as a 
whole. For example, the equations for the SFI 
between the polytwin consisting of domains 1 and 2 
and the polytwin consisting of 1 and 3 is 

Xi[eij(l,2)-e!j(l,3)]xj=0 (6) 

parallel to the conjugate SFI plane n of the SFI 
plane of the individual plates, m, then interference 
of the edge fields cancels the long-range stress field 
components. Such plane-parallel packets (also 
named in the literature as polytwins (by analogy 
with polysynthetic twins, or polydomains) are a typ- 
ical element of domain morphology. 

The polytwin as a whole can be considered as an 
effective "domain" of second order in a hierarchy 
of domain structures [33,37]. By analogy domain 
structures of even higher order can also be con- 

The average self-distortions 5;) (1,2) and 5,; (1,3) 
are expressed through an average distortion of the 
polytwins 

SIJ (1,2) = (1 - a)Sij (1) + aSa (2) (7a) 

5.;(l,3) = (l-/3)5o(l) + i85;;(3) (7b) 

where a (or /3) is the fraction of domains 2 (or 3) 
in polytwin (1,2) (or 1,3), and where the distortions 
5,;(1), 5,7(2) and 5/j (3) include the supplementary 
rotations [Eq. (3)] of the domains in the polytwins 
required for conserving coherency. 
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y 
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y 
y 

[100] 

fOilf^fOli] 

Fig. 8. Polydomain structures of two second order polytwin plates composed of different combinations of three rotational variants 
(white, light and dark shades) of the orthorhombic phase as seen in the [011]c direction. The domain interfaces are either SFI (twin 
boundaries) or low-angle boundaries (dislocation walls). Continuous lines represent "edge-on" planes while doted lines are inclined 
planes. Possible combinations of three variants are: (a) (l,3)/(2/3), (2,4)/(l,4); (b) (4,5)/(2,5), (2,6)/4,6), (3,5)/(l,5), (l,6)/(3,6); (c) 
(l,2)/(2,4), (3,4)/(2,4), (1,2)/(1,3), (3,4)/(l,3); (d) (l,2)/(2,3), (1,2)/(1,4), (3,4)/(2,3), (3,4)/(l,4); (e) (4,6)/(2,6), (l,6)/(3,6), (1,5)/ 
(3,5), (4,5)/(2,5); (f) (l=2)/(2,4), (3,4)/(l,3). (The labeling of the variants follows Fig. A.2.) 

In general, to determine the pseudo-SFI 
between polytwins, the fractions a and j3 must be 
known. If a = /3, the stress free boundary between 
polytwin (1,2) and polytwin (1,3) may run along the 
SFI between domains 2 and 3. For that, a line of 
intersection of the 1,2 SFI and the 1,3 SFI has to 
belong to the 2,3 SFI. For the BCC^ORT trans- 
formation there are three different interfaces of 
this type between polytwins consisting of 3 types of 
domains: along {100}c, {110}c and {/ill}c according 
to the three possible orientations of the SFIs 
between the domains given in Table 4. Using Table 
4 it is not difficult to find all possible second order 
polydomain morphologies for the a = j3 case. Such 
morphologies for three-variant structures are 
represented in Fig. 8. It is very likely that such 
structures with a = /3 correspond to a minimal 
energy. 

While interfaces between polytwins that satisfy 
Eq. (6) have no long-range stress field, they do 
have microstresses distributed in the packet 
boundary. Even in the case of good matching 
{a = P), the rotation between different domains 
causes microstresses which can be described as 
fields from disclination dipoles. These micro- 
stresses at the boundary could manifest themselves 
during annealing as sites for further microstruc- 
tural change. 

The approach of packing first, second, and 
higher order effective domains can be applied in 
principle for the analysis of any hierarchy of 
domain structures. The scale of such hierarchical 
structures should be determined by the com- 
petition between the short-range microstresses 
distributed in the packet boundaries that tend to 
disperse the structure and the effective interfacial 
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energy that tends to coarsen the structure.^ The 
number of the variants in the polydomain structure 
which are necessary to accommodate the self strain 
depends on boundary conditions. For a polydomain 
structure inside an untransformed matrix, the sim- 
plest polytwin that has an invariant plane boundary 
with the matrix is sufficient [39,40]. If the boundary 
of the region to be transformed is fixed, e.g., it 
coincides with a grain boundary, minimum elastic 
energy corresponds to the minimum average self- 
strain of the region, or zero average shear. This 
condition can be achieved only when all variants 
take part in the polydomain structure. The number 
of the variants determines an internal hierarchy of 
the polydomain structure. 

5.   Expected Microstructures and 
Transformation Paths 

The present analysis suggests that three different 
types of domain structures are possible for a single 
phase microstructure of the O-phase depending on 
the transformation path traversed. Paths 1-3 are 
summarized in the form of subgroup sequences. 
These paths differ primarily as to whether the 
hexagonal symmetry phases or the B19 phase 
occurs at an intermediate stage of transition. The 
path involving the hexagonal phases (path 1) in- 
volves the formation of a supergroup; i.e., the 
intermediate orthorhombic A20 structure trans- 
forms to the hexagonal A3 by pure displacement. 
In general this is impossible (as a pure displacive 
transformation) if the parent phase has either long 
or short range chemical order of a type which 
would have been required to adjust to form the 
higher symmetry [41]. Thus path 1 is only possible 
for alloys quenched from a disordered BCC phase. 

For Ti-Al-Nb alloys quenched from a B2 phase 
field, path 2 is clearly expected. The path is charac- 
terized by the presence of the B19 structure as an 
intermediate stage of transition, which in this case 
forms by a purely displacive transition from B2. 

^ As shown by [33,35,37], similar hierarchical structures can also 
be formed by domains consisting of different phases. For exam- 
ple, the structure morphologically similar to the 3-domain struc- 
ture in Fig. 8 can be created by incorporating two domains of 
the O-phase inside of which there is one domain of the hexago- 
nal DGi<) phase (domain 1). The geometry of such a het- 
erophase structure will be analyzed in Bendersky and 
Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 585 (1993). 

The B19 phase could also form from an alloy 
quenched from the disordered BCC field by path 2 
or by path 3. This latter path involves the forma- 
tion of the B19 structure from the orthorhombic 
A20 by a pure ordering reaction between Ti and 
Al/Nb. Experimentally, evidence for the occur- 
rence of one of the three paths can be obtained 
with microstructural information for the transient 
existence of B19 or A3 phases in the final O-phase 
domain structure. In alloys near the TiaAl-NbaAl 
section of the ternary system, the tendency towards 
B2 order in the high temperature BCC phase is 
strongest for alloys near TizAlNb because the two 
Wyckoff sites of the B2 are known [21] to be filled 
with Ti and a mixture of Al and Nb. Thus paths to 
the O-phase involving the B19 phase are most 
likely for alloys with Nb contents around 25 at%, 
while the path to the O-phase involving the hex- 
agonal phase is expected for lower levels of Nb. 

The microstructural development for the three 
paths is depicted in Fig. 9, starting from a large 
grain single phase BCC and ending with single 
phase orthorhombic. It is assumed that the inter- 
face configuration does not change significantly 
after formation at each stage of the transformation. 
All three paths, in their first stages, have similar 
microstructures composed of orthorhombic phase 
domains (either disordered Cmcm(A20) for paths 
1 and 3 or ordered Pmma(B19) for path 2). 
According to the discussion in Sec. 4, the domains 
will form a polytwin morphology with SFIs parallel 
to either {100}c, {110}c or conjugate {hhk)c planes. 
In path 2, the BCC->B2 ordering precedes the 
formation of the orthorhombic phase but does not 
influence the formation and morphology of the 
polytwin structure. The APBs due to this ordering 
(curved lines) separate either interconnected or 
closed volume domains and may be found continu- 
ously crossing the polytwin domains. If path 2 starts 
from the B2 phase, such APBs will be absent. 

Inside the polytwin plate-like domains, as Fig. 9 
shows, anisotropic planar interfaces (schematically 
represented as rectangles, or straight lines for 
interfaces connected to twin boundaries) separate 
two translational domains resulting from antiphase 
shuffles (formally due to the Fmmm^^Cmcm and 
Cmmm^^Pmma symmetry changes). The aniso- 
tropy is expected because of the stacking fault 
nature of the interface structure. Because of the 
anisotropy the interfaces are distinct for each 
orthorhombic phase variant orientation. 
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[12] [4] [3] [144] 

PSKI 
Kpy^ - ̂ mfu 
IMS®™ ^^^bll^^p^ 

I Nff!%l 
Im3m(A2) -* Cnicni(A20) ^        Peg/mmcCDOig) -> Cmcm(0) 

P63/mnic(A3) -> 

[2] [12] [2] [48] 

Im3m(A2) Pm3m(B2) Pmma(B19) Cmcm(O) 

Im3m(A2) Cmcm(A20) Pmma(B19) Cmcm(O) 

Fig. 9. Graphical representation of the microstructural development for the three paths, starting from a large grain single phase BCC 
and ending with single phase orthorhombic. For the figure it is assumed that the interface configuration does not change significantly 
after formation at each stage of the transformation. 

577 



Volume 98, Number 5, September-October 1993 

Journal of Research of the National Institute of Standards and Technology 

After the formation of the polytwin structure by 
displacive ordering, the next step in all three trans- 
formation paths is chemical ordering. For path 1 
the ordering involves two steps. First, A3^DOi9 
ordering of the hexagonal lattice (between Al and 
Ti/Nb) results in a four translational domain struc- 
ture with isotropic interfaces shown in Fig. 9 as 
thin lines with triple junctions. Some of the inter- 
faces are shown to coincide with previously formed 
translational interfaces. These coinciding segments 
will have a structure where changes in both atomic 
environment and distances are combined. Sec- 
ondary ordering (DOio-^O-phase) between Ti and 
Nb results in a second polytwin domain structure 
with planar interfaces running through the DOw 
APBs, which are not effected by the secondary 
ordering. The interfaces in the same primary plate 
can have different orientations (either orthogonal 
or 60° rotated) as discussed in Appendix A and 
shown in Fig. 9. 

In path 2, the ordering (B19->0-phase) between 
Al and Nb results in a two domain structure, with 
isotropic interconnected or closed interfaces. Due 
to the presumed lower temperature of transforma- 
tion for this stage, the size of these antiphase 
domains is shown in Fig. 9 smaller then of those 
from the first BCC^B2 ordering. If the path starts 
from the B2 phase only the second type of 
antiphase domains will occur in the final 
microstructure. 

In path 3 there are two steps of chemical order- 
ing—the first one between Ti and Al/Nb atoms 

(A20-^B19) and the second one between Al and 
Nb (B19^'0-phase) —resulting in isotropic inter- 
faces. Again, due to the difference in the presumed 
temperature of transformation, the size of these 
antiphase domains may be different. However the 
difference, as it is shown in Fig. 9, is less than for 
path 2, and this is the only difference in these two 
final microstructures. 

6.   Appendix A. SFIs for the P63/mmc 
(D0i9)^Cincin(0) (6/mmni^^mmm) 
Transition 

The structural relation between the phases 
(o — orthorhombic; h—hexagonal) gives the follow- 
ing lattice correspondence: aa =aih; Ao = aih + 2fl2h; 
Co = Ch. Fig. A.l shows stereographic projections of 
the point groups of the hexagonal and of the 
orthorhombic phase variants, according to the 
lattice correspondence. When the symmetry ele- 
ments of a pair of variants are compared, we find a 
set of two orthogonal mirror planes which belong 
to the parent phase but not to the pair considered, 
e.g., for variants 2 and 3 in Fig. A.l, the set of lost 
mirror planes is ;c =0 and y =0. Similarly, for the 
1/2 and_l^ pairs of domains the sets are y/x = tan 
30° = V3/3, y/x = tan 120°=-V3_and y/x = tan 
60° = V'3, y/x=tan 150°=-V3/3, respectively. 
Being mirror planes, and therefore twinning 
planes, the three sets are planar SFIs running 
parallel to the z-axis. 

♦—0*^* 

«(3) 

00   Oil 
^. -^ ^      3:^ 

Fig. A.1- Stereographic projections of the point groups of the hexagonal 
(6/mmm) and of the orthorhombic phase variants (mmm's), according to 
their lattice correspondence. When the symmetry elements of a pair of 
variants are compared, a set of two orthogonal mirror planes is found that 
belong to the parent phase but not to the pair considered. 
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The same results can be obtained by solving 
Eq. (4). For this purpose, the self-strain tensor of 
the three variants must be first determined. For 
variant 1 in Fig. A.l, the self-strain tensor will be 

eij(l) = 

ei 0 0 

0 e2 0 

0    0  es 

(A.1) 

and 

e,y(3)-e,y(l) = 
V^(fo-fl) 

\^ 1 0 

1 -V3 0 

0       0       0 

. (A.4) 

Equation (4) for the SI interfaces between variants 
3 and 1 will be 

where 

ei=a+a^/2;   e2 = b+b^/2;   e3=c+c^/2. 

with 

ao-Oh   .    fco-Vjflh        co-Ch 
a =- 

flh V^flh 
■:c=- 

Cb 

The self-strain tensor for the other two variants 
will be obtained using Eq. (1). The variant generat- 
ing symmetry operation in that case is chosen to be 
the three-fold anti-clock-wise rotation (g.-y =3"), so 
that e,y (3) = 3-3-^,7(1) and e,v(2) = 3-3" e,v(3) 
(see Fig. A.l). In order to do calculations in 
orthogonal coordinates, the matrix of the three- 
fold rotation must be presented in the same coordi- 
nates. It is found as 

3,7 = 

-1/2     -\/3/2   0 

V3/2    -1/2       0 

0 0 1 

(A.2) 

After matrix multiplication we find that 

^.;(3) = 

4 + 3^    -v54 + \^^ 

.^^4 + ^4       3£+4 
4 

0 

4    4 

0 

, (A.3) 

[eij (3) - en (l)]xiXi =x^-y^+—sxy =0 

or (A.5) 

(y-V3x)(y+x/V3) = 0. 

Two solutions for the quadratic equation arey/x = 
V3 andy/x = - V5/3 and they do not depend on 
the parameters a, b, and c. These are the same 
mirror planes found with the help of the stereo- 
graphic analysis performed above. Solutions for the 
other variants can be found similarly, and they are 
the remaining mirror planes of the 6/mmm with 
y/x=V3/3, - V3 (for the 1/2 variants) and x=0, 
y = 0 (for the 2/3 variants). A pair of variants can 
be identified unambiguously from their interface 
orientation. 

7.   Appendix B.    SFIs for the Im3m(A2) 
^Cmcm(A20) and Pm5in(B2) 
-»Pmma(B19) (mJm-^mram) 
Transition 

The structural relation between the phases 
(c—cubic; 0 — orthorhombic) gives the following 
lattice correspondence: ao=aic; 6o=a2c+fl3c; 
co=«2c—osc According to the lattice correspon- 
dence, Fig. A.2 shows the stereographic projections 
of the point groups and the crystallographic axes of 
the parent cubic (m3m) and its six subgroup 
variants of the orthorhombic (mmm) phases. Com- 
paring symmetry elements belonging to a pair of the 
variants with those of the parent cubic, we can find 
mirror planes of the parent (but missing in the 
product variants) that reflect the variants into each 
other. The mirror planes serve as the SFIs. For a 
pair of variants sharing the ao axis (1/2, 3/4, and 5/6 
pairs in Fig. A.2), there are two orthogonal mirror 
planes of {100}c type (parallel to the ao axis). For 
the other pair of variants, not sharing a common 
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Fig. A.2. Stereographic projections of the point groups and the crystallograpJiic axes of the parent cubic 
(m3m) and its six subgroup variants of the orthorhombic (mmm) phases. Comparing symmetry elements 
belonging to a pair of the variants with those of the parent cubic, mirror planes that reflect the variants into 
each other can be found. 

direction, there is only one such mirror plane, of 
{110}c type. Orthogonal to the {110} plane is either 
a {hhk}c or a {hhk}c plane, generally of an 
irrational orientation which depends on the ratio of 
the lattice parameters. In order to find h and k, 
Eq. (4) must be solved. 

We solve Eq. (4) in the coordinate system of the 
cubic phase shown in Fig. A.2. First, we find the 
self-strain tensors of the six variants using the 
variant generating operators, Eq. (1). All variants 
can be generated by the mirror plane operations, 
starting from the first variant: 

e(2) = mKX)mi(M)e(l),   e(5) = mio-imio-ie(l), 

e (4) = moiimoiie (1),   e (6) = moiomuioe (5), 

e(3) = mu!omi(Kie(4). (B.l) 

Matrices for the mirror planes are given in Table 
11.4 of The International Tables for Crystallography 
[37]. The self-strain tensor for variant 1 (see Fig. 
A.2) in the coordinates of the variant is 

where 

ao — Uc        bo — 'v2ac 
a = ,b =- 

Via, 
c =- 

:o-V2ac 

Vlac 

and flc, ao, bo, Co are the lattice parameters of the 
cubic and the disordered orthorhombic phase (for 
the ordered O-phase half of their values of ao and 
bo should be used). 

In order to obtain the et) (1) tensor in cubic coor- 
dinates, the tensor's axes must be rotated 45° 
around [100]c, which is obtained by the rotation 
and permutation matrix 

0mm 

0 —m   m 

1 0      0 

Vl 
m=—. (B.3) 

The tensor e,-; (1) in cubic coordinates is then 

eliiT)^ 

a 0 0 

0 & 0 

0   0c 

(B.2) e,;(l) = a,*aj/e//(l) = 

ABO 

B A 0 

0    0   C 

(B.4) 
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where/I =1/2(6+c); 5 = l/2(c-i); C=a. 
The self-strain tensors for other variants are: 

eii{2) = 

A   -B 0 A 0 B 

-B   A    0 , e.v(3) = 0 c 0 

0     0   C B 0 A 

(B.5) 

e,7(4) = 

A    0 -B 

0   C    0 , e<j{5) = 

-BOA 

COO 

0 A B 

0    B   A 

e/;(6) = 

COO 

0 A -B 

0   -B   A 

(B.6) 

(B.7) 

Equation  (4)  for  the  SFI  interface between 
variants 1 and 2 will be 

[eij(2)-eij(l)]XiXj  = 

0   25    0 

2B    0    0 

0     0    0 

XiXj =xy = 0 . 

(B.8) 

Solutions are the symmetric A: = 0, (lOO)c, and>' =0, 
(OlO)c, the twinning mirror planes expected from 
symmetry. 

For variants 1 and 3 Eq. (4) is 

One solution of the equation is the expected 
syrnmetric case, y =z, which corresponds to the 
(Oll)c crystallographic plane. The second, non- 
symmetric case, is 2Bx + (A -C)(y +z) = 0. This is 
the equation of a plane having a normal n where 
nx = 2B,ny = (A-C), and n, = (A-C). This plane 
has (hkk)c Miller indexes, and therefore orthogo- 
nal to the (OlT)c. The ratio ofhtok is 2B/(A -C), 
or 2(c —b)/(b +c — 2a) and depends only on the 
lattice parameters of the orthorhombic phases 
[h/k=2{2co-bo)libu + 2co-2\/2ai))]. For the lat- 
tice parameters of the Ti-Al-Nb DO is and O 
phases [4], the Miller indexes are close to {T 5 5}c 
and {T 4 4}c, respectively. 

Similarly, the solutions for all 15 pairs of do- 
mains were found. The results are given in Table 4. 
There are 30 (N = 6x5) SFIs, of which only 21 are 
different orientations: 3 of the {100}c type, 6 of the 
{110}c type and 12 of the {hkk}c type. 

Figure A.3 shows the directions of the SFI traces 
superimposed on the [011]c stereographic projec- 
tion, as they would be seen for crystals oriented for 
TEM at the [011]c zone axis. Such drawings are 
useful in analyzing the nature of interfaces ob- 
served in TEM specimens of the Ti-Al-Nb alloys, 
as shown by Bendersky and Boettinger. Figure 
A.3a presents traces of the symmetric {OOljc- and 
{110}c-type interfaces. Figure A.3b presents traces 
of the non-symmetric {hhk}c-type interfaces. Two 
of the {hhk}c-type interfaces are oriented edge-on 
(khh and khh), and two are inclined but with a 
rational trace direction [OlT] {khh and khh). Since 
the lattice parameter varies with temperature and 
composition, a range of possible orientations of the 
interfaces is given for the orthorhombic phase hav- 
ing lattice parameters ranging from those of the 
Ti2AlNb O-phase (determined in [24] as 
flo = 0.60893 nm, feo = 0.95694 nm, co = 0.46666 nm) 
to those of the hexagonal DO 19 phase (determined 
in [4] as flh = 0.578 nm,foh = 1.001 nm, Ch = 0.466 nm). 

[eij(3)-eij{})]XiXj  = 

0 B -B 

B A-C 0 

-B      0    C-A 

(y -z) [2Bx + (A-C)(y +z)].     (B.9) 
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1/2;5/6;3/4 —   -t 2/4 ; 1/3 [100]  ^, 
2/3 

3/6;4/S:2/6:i/s 

1/2,-3/4 

v,>l/Sr2/S;4/6;3/5 

-< 1/3;   2/4 

V1.-2/3 

1/4 

Fig. A.3. Directions of the SFI traces superimposed on the [011]c stereographic projections, as they would be seen for crystals oriented 
for TEM at the [011]c zone axes, (a) traces of the symmetric {001}- and {110}-type interfaces, (b) traces of the non-symmetric lattice 
parameter depended {/i/i/c}-type interfaces. A range of possible orientations for the orthorhombic phase having lattice parameters 
ranging from those of the Ti^AINb 0-phase (determined in [24] as a =0.60893 nm, b =0.95594 nm, c =0.46666 nm) to those of the 
hexagonal DOiv phase (determined in [4] as a = 0.578 nm, b = 1.001 nm, c — 0.646 nm) is shown as shaded area. 
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